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We present an approach for determining the temporal consistency of Particle Filters in video tracking
based on model validation of their uncertainty over sliding windows. The filter uncertainty is related
to the consistency of the dispersion of the filter hypotheses in the state space. We learn an uncertainty
model via a mixture of Gamma distributions whose optimum number is selected by modified informa-
tion-based criteria. The time-accumulated model is estimated as the sequential convolution of the uncer-
tainty model. Model validation is performed by verifying whether the output of the filter belongs to the
convolution model through its approximated cumulative density function. Experimental results and
comparisons show that the proposed approach improves both precision and recall of competitive
approaches such as Gaussian-based online model extraction, bank of Kalman filters and empirical thres-
holding. We combine the proposed approach with a state-of-the-art online performance estimator for
video tracking and show that it improves accuracy compared to the same estimator with manually tuned
thresholds while reducing the overall computational cost.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Sequential Monte Carlo methods, also known as Particle Filters,
have demonstrated their success for parameter estimation in non-
linear and non-Gaussian problems in many areas such as video
tracking [1], navigation [2], econometrics [3] and signal processing
[4]. When the observed data hold the modeling assumptions, the
estimated errors converge to zero [5] (i.e. with zero mean and
small covariance). However, several sources of error exist that
affect the filter performance and lead to inconsistency, where the
estimated errors have non-zero mean or high covariance [6]. Filter
consistency is commonly analyzed to detect estimation errors over
time [7].

Determining the temporal consistency of Particle Filters can be
cast as a change detection problem [8]: consistency measures are
generated and then analyzed for deciding between one of two
cases, namely consistent or inconsistent operation. Examples of
such approaches include the v2 validation [6], the cumulative
sum (CUSUM) [9] and the expected model likelihood [10]. How-
ever, their performance is limited due to drawbacks related to
high-dimensional state spaces [6], prior change magnitude
assumptions [9] or empirical thresholding [10]. Domain-related
knowledge can be exploited to improve change detection perfor-
mance. For example, in video tracking, Particle Filter consistency
is measured as spatial uncertainty [11], time-reversibility [12] or
combining both approaches [13]. However, current approaches
are tuned to particular data either in the consistency measurement
or in the change detection process due to the need of using empir-
ical thresholding approach [12,13].

In order to enable the application of Particle Filter validation to
unseen data, in this paper we propose an approach to estimate its
temporal consistency without relying on empirical thresholding
and we present a robust model for temporal filter uncertainty.
We measure filter consistency as its uncertainty (dispersion of its
hypotheses in the state space) and validate an uncertainty model
over sliding windows, allowing to increase the robustness of the
consistency estimation, unlike existing approaches based on sin-
gle-point analysis [14,12,13]. Such uncertainty model is approxi-
mated by sequential convolutions of mixtures of Gamma
distributions whose number of mixture components is selected
via modified information-based criteria. By applying hypothesis
testing over filter uncertainty models, the parameters required
for detecting inconsistency are automatically determined, unlike
rstand.
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empirical-based approaches [15,12,13,16]. The proposed approach
is included in a framework for online performance evaluation of
video tracking [13]. The results show that the proposed approach
improves related work over two heterogeneous datasets contain-
ing challenges in both change detection and video tracking.

The paper is organized as follows: Section 2 states the
addressed problem and Section 3 discusses the related work.
Section 4 presents the proposed approach whereas Section 5
describes the filter consistency modeling. Section 6 introduces its
use for video tracking evaluation. Section 7 presents and discusses
the experimental results. Finally, Section 8 concludes the paper.
2. Problem statement

Let Xt ¼ fðxðnÞt ;pðnÞt Þgn¼1;...;N be the output of N weighted particles
generated by a Particle Filter at time t, where each xðnÞt defines a
hypothetical estimation weighted by pðnÞt . Each particle should
have a low (high) weight when it is far from (close to) the ideal
state. Each particle is recursively obtained with a prediction, gð:Þ
[17]:

xðnÞt ¼ g xðnÞt�1;jt

� �
; ð1Þ

and an update step zð:Þ:

pðnÞt / z xðnÞt ;qt

� �
; ð2Þ

where jtf gt¼1;... and qtf gt¼1;... are independent and identically dis-
tributed random processes. From these steps two distributions are
derived, namely the prior and posterior distribution. The prior dis-
tribution predicts the states (particles) relying on previous data
only; whereas the posterior distribution is estimated by considering
the prior given all observations up to the current observation time.

The problem we address is the online determination of the con-
sistency of the filter (i.e. its reliability) by observing the posterior
distribution. A consistent behavior means that Xt provides an accu-
rate state estimation. Let C and I be the labels for consistency and
inconsistency, respectively. The goal of online inconsistency detec-
tion is to assign a label lt as follows:

Xt !
uð�Þ

lt 2 fC; Ig; ð3Þ

where uð�Þ is the labeling approach. Such approach should be accu-
rate, offer low latency and operate without manual parameter tun-
ing. Fig. 1 shows an example of a Particle-Filter-based tracker where
the filter becomes inconsistent as most of the hypotheses are apart
from each other and have small weights. The labeling approach
shall automatically identify this inconsistent behavior of the filter.
80 90

Fig. 1. Example of filter consistency for face video tracking using a color-based Particle F
ellipse represents the estimated target. The left image illustrates a consistent behavior. T
for clarity only by their center) are colored according to their weights: the warmer the co
legend, the reader is referred to the web version of this article.)
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3. Related work

In this section, we review the literature for estimating the con-
sistency of a Particle Filter and for change detection, which are
later particularized for video tracking.

The consistency of a Particle Filter can be estimated from its
posterior. For example, likelihood ratios are computed using filter
observations (weights) for consistent and inconsistent assump-
tions, which are later accumulated over time [9]. The Kullback–Lei-
bler divergence is used to measure differences between prior and
posterior distributions [10]. However, the prior is assumed to be
static without being conditioned to the observed data over time,
thus limiting its use to stationary prediction [10], i.e. the variance
of the posterior does not increase with time. Filter consistency can
be estimated as the dispersion of its hypotheses (particles) in the
state space [11]. The posterior hypotheses could be also converted
into uniformly distributed variables through the cumulative distri-
bution of the observations [6]. However, its computation for high-
dimensional state spaces is not feasible [12]. The Mahalanobis dis-
tance (MD) between forward and backward filters can also be used
for consistency estimation [12]. However, MD values have not got a
fixed variation range for identifying filter inconsistency without
ambiguities as several values can simultaneously represent consis-
tent and inconsistent operation under different conditions [13].
Recently, concentration measures have been proposed using the
likelihood of the filter observations [19].

Estimating inconsistency of Particle Filters can be approached
as a change detection problem. The goal is to recognize significant
deviations from a known level of the measurement. Approaches
exist based on single or multiple detectors [7]. Single-detector
approaches apply a whiteness test to the filter residuals (errors).
The cumulative sum approach (CUSUM) is a popular single-detec-
tor example that accumulates likelihood ratios of a Particle Filter
[9]. Then, empirical thresholding is used to detect changes
[9,10,19]. Multi-detector approaches have each detector matched
to a certain change assumption. Although not applied to Particle
Filters, several approaches exist for signal processing such as the
bank of matched filters [7] and Parallel-CUSUM [20]. The former
adapts each detector to new change hypothesis when its prediction
error is high and the latter runs in parallel several (differently
adjusted) CUSUM detectors. Both detect changes by concatenating
over time the results of the most probable detectors, namely those
with lowest prediction errors. However, CUSUM-based approaches
require prior knowledge of the change magnitude, an information
that is often not available. For unknown change magnitudes, model
validation has been proposed as an alternative when only the
unchanged status is known by computing its fitness with observed
data [8] such as the v2 test to verify uniformity of measurements
[6]. Finally, other approaches do not consider any prior modeling
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or thresholding and use sliding windows for online model extrac-
tion and validation. Examples are the two-model validation
through the v2 test [7] and SVMs [21], where both models are
extracted from sliding windows with different lengths, assuming
that one does not have any changes. However, online model
extraction requires a minimum window length to get statistically
significant models.

Particle Filters are widely employed for parameter estimation of
targets in video tracking. Filter consistency is analyzed for perfor-
mance evaluation over time to detect errors. Examples are those
looking at time-reversibility [12], spatial uncertainty change over
time [13], illumination model consistency [22] or filter selection
in multi-camera settings [23]. One of the major problems is the
use of consistency statistics [11,12] whose variation range is
unknown, thus making it difficult to estimate a significant devia-
tion. Empirical thresholding is broadly applied to detect changes,
limiting their application to unseen data. Similar approaches also
exist for non-Particle Filter-based approaches focused on feature
accuracy [14], filter switching [24] or multi-hypothesis similarity
[15,16]. All these approaches are making use of data-dependent
manually selected thresholds (computed offline) for change detec-
tion. This manual tuning prevents the design of online strategies to
correct inconsistency thus limiting the analysis of new data.

Table 1 compares the main approaches discussed in this section.
In summary, current estimators of Particle Filter consistency are
limited as most of the extracted measures have not got a bounded
range of variation [12], require the knowledge of change magni-
tudes [9], use empirical thresholding [10,13,22] or are not applica-
ble to large state spaces [6].
4. Accumulated validation of uncertainty

Model validation provides a robust framework for Particle Filter
consistency analysis whose performance could be improved by
sliding windows. For measuring the consistency of the Particle
Filter, we first compute the uncertainty of its posterior and accu-
mulate its change over a temporal window. Then, we validate an
uncertainty change model to check consistency (Fig. 2). We term
the proposed approach as Accumulated Validation of Uncertainty
(AVU).

4.1. Filter uncertainty estimation

We estimate the uncertainty for each time t by measuring the
spread of the generated hypotheses in the state space through
Rt ¼ ½fij� (the covariance matrix of the filter output Xt), where each
element fij is defined as [11]:
Table 1
Comparison of the reviewed approaches for change detection and model validation (Ke
Maximum Likelihood; MV, Model Validation; PF, Particle Filter; VT, Video Tracking).

Approach Consistency estimation Modeling of filter status Cha

No change Change App

(CUSUM) [7] Accumulated filter residuals Offline Offline ET
(v2 test) [7] Gaussian model similarity Online Online MV
(Bank filter) [7] Residuals of Kalman filters Online Online ML
[9] CUSUM extension for PFs Offline Offline ET
[21] SVM-based descriptors Online No ET
[6] Uniform distribution conversion Online No MV
[10] Expected log likelihood Offline No ET
[20] Log likelihood ratio Offline Partial ML
[12] Forward–backward similarity Online No ET
[13] Spatial uncertainty Online No ET

Proposed Filter uncertainty Offline No MV

Please cite this article in press as: J.C. SanMiguel, A. Cavallaro, Temporal valida
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fij ¼
XN

n¼1

pðnÞ xðnÞi � li

� �
xðnÞj � lj

� �
; ð4Þ

where xðnÞi is the ith element of the nth estimation (particle) of

Xt;li ¼ E xð1;...;NÞi

h i
and E �½ � is the expectation. The filter uncertainty

is computed as [13]:

ut ¼
1
C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det Rtð Þd

q
; ð5Þ

where C is a normalizing constant to consider the target size as in
[13], detð�Þ is the matrix determinant and d is the number of dimen-
sions of xn

t . Unlike [13], we compute the uncertainty ut (Eq. (5)) for
the complete target state without temporal smoothing. Fig. 3 shows
an example of uncertainty analysis of Particle Filters for video
tracking where the filter becomes inconsistent when losing the
target around frame 540.

For detecting uncertainty transitions from low-to-high or high-
to-low values, we compute a change signal ct that maximizes the
difference between ut and previous uncertainty values. We use a
sliding window of length W to remove the offset uncertainty value
that could be exhibited due to the initial configuration or the
observations:

ct ¼
ut � ut̂

ut̂

���� ����; ð6Þ

where

t̂ ¼ argmax
j2W

ut � uj

uj

���� ����� �
: ð7Þ
4.2. Test statistic and hypothesis testing

The problem consists of detecting changes in the time series
ct ðt ¼ 1;2; . . .Þ, which is sampled from a random variable Q follow-
ing the probability density function (pdf) p1ðvÞ. For increasing
robustness of model validation, we accumulate ct by using a sliding
window of length L:

st ¼
XL

r¼1

wrcrþt�L; ð8Þ

where L determines the amount of historical data considered and
wr 2 ð0;1� weights the contribution of each crþt�L to st defining the
amount of variation required for detecting the change. For example,
a geometric weight (wr ¼ ð1� kÞ kr with k 2 ½0;1�) [7] gives low
importance to new data, whereas all data are equally considered
with a uniform weight ðwr ¼ 1Þ. The former case requires higher
y: CL, Change Length; ET, Empirical Thresholding; GA, Gaussian Assumption; ML,

nge detection Usage restrictions Computationally feasible over time

roach Sliding win.

Yes – Yes
Yes GA Yes
No CL Yes
No PF Partial
Yes – Yes
Yes PF Partial
No PF Yes
No – Yes
No PF, VT No
No PF, VT Yes

Yes PF Yes
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Fig. 2. Block diagram of the proposed approach.

440 460 480 500 520 540 560 580
0

0.2

0.4

0.6

0.8

1

Frame

V
al

ue

x̂(rrErorrehturT-dnuorG t ;GTt )

Filt er uncertainty u(t)

460 480 500 520 540 560 580
0

1

2

3

4

V
al

ue

Frame

Uncertainty change c(t)

Fig. 3. Evolution of the filter uncertainty and its error for color-based Particle Filter video tracking [18]. Green and red ellipses are, respectively, ideal and estimated target
locations. Sample frames correspond to vertical dotted lines. The filter error was computed as in Section 7.1. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

4 J.C. SanMiguel, A. Cavallaro / Computer Vision and Image Understanding xxx (2014) xxx–xxx
variation in the new incoming data than the latter for detecting a
possible change. We use uniform weights as we are interested in
studying changes over time without having any prior assumptions
on the filter response (i.e. if changes are long-term or short-term).

Let the null hypothesis H0 indicate that data are consistent with
the model st 2 Sð Þ and st be sampled from a random variable S fol-
lowing the pdf p2ðvÞ which describes the time accumulation of
p1ðvÞ, thus defining the test statistic for the H0 hypothesis. Let H1

be the hypothesis that a change occurred with unknown magni-
tude and parameters (i.e. non-trainable). Model validation implies
that one of the hypotheses holds true [5]:

H0 : st 2 S

H1 : st R S;
ð9Þ

H1 is accepted (H0 is rejected) when a change is detected st R Sð Þ.
For testing the H0 hypothesis, we use the cumulative distribution
function (cdf) of S defined as follows:

P2ðjÞ ¼
Z j

�1
p2ðvÞdv: ð10Þ

For accepting H0, a probability of false alarms a is required [7]
(with values ranging from 0.001 to 0.05 depending on the applica-
tion) resulting in the following condition:

P2ðst > bÞ ¼ a; ð11Þ

where b is a constant to determine if st values follow p2ðvÞ depend-
ing on the considered cdf P2ðvÞ and the false alarm rate a. Then,
Please cite this article in press as: J.C. SanMiguel, A. Cavallaro, Temporal valida
(2014), http://dx.doi.org/10.1016/j.cviu.2014.06.016
Eq. (11) is reformulated as P2ð stj j < bÞ ¼ 1� a to define the hypoth-
esis test for detecting a change in ct as the condition st > b. The
value of b can be (approximately) determined by computing the
empirical distribution of st and estimating the a-quantile.

In summary, the proposed approach relies on estimating the cdf
P2ðvÞ, which depends on the pdfs p1ðvÞ and p2ðvÞ of the data ct and
st , respectively, and the computation of b to accept (lt ¼ C) or reject
(lt ¼ I) H0.

5. Modeling the consistency of the filter

We now model the consistent filter status p1ðvÞ and its win-
dow-based accumulation p2ðvÞ.

5.1. Filter uncertainty model p1ðvÞ

Obtaining the PF uncertainty change ct considers three stages.
In the first stage, the weighted covariance matrix of the target state
is computed as described in Eq. (4). Each matrix element is a

weighted sum of products between two terms ðxðnÞi � liÞ and

ðxðnÞj � ljÞ. Each term can be modeled as a Random Variable (RV)

following a zero-mean normal distribution Nð0;riÞ as defined in
Eq. (1). The variance ri of each distribution depends on the process
noise jt as defined in Eq. (1). Therefore, Eq. (4) is a weighted com-
bination of products between two Gaussian-distributed RVs that
can be expressed as a combination of Chi-Square RVs (or their
equivalent form using Gamma RVs) [25]. Such weighted covariance
tion of Particle Filters for video tracking, Comput. Vis. Image Understand.
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matrix only depends on the common representation of the poster-
ior density in the PF framework (set of particles and associated
weights), thus being applicable to any PF-based tracker. The sec-
ond and third stages (Eqs. (5) and (6), respectively) consist of pair-
wise subtractions, products and ratios of Gamma RVs. The result of
each operation can be expressed via Bessel functions which are
mixtures of Gamma distributions [26,27].

We propose to model p1ðvÞ as a mixture of K Gamma distribu-
tions [28]. In this mixture, each kth Gamma is defined by its
parameters (gk and hk) and its contribution ðckÞ to the mixturePK

k¼1ck ¼ 1
� �

. The pdf p1ðvÞ is then approximated by:

gmðv; nÞ ¼
XK

k¼1

ckf ðv ;gk; hkÞ; ð12Þ

where v is a data sample, n ¼ f gk; hk; ckh i : k ¼ 1; . . . ;Kg and
f ðv ;gk; hkÞ is the kth Gamma distribution defined as:

f ðv ;g; hÞ ¼ 1
hg

1
CðgÞv

g�1e�
v
h

for v P 0 and g; h > 0;
ð13Þ

where g is the shape and h is the scale. When g > 1 the distribution
is bell-shaped, whereas for g < 1, it is L-shaped. The parameter set n
is estimated using training data. Fig. 4 depicts examples of p1ðvÞ
distribution using empirical data for various assumptions of the
H0 hypothesis or consistent case (i.e. filter error). The ct values are
always positive with an L-shaped distribution close to zero (the
uncertainty is almost constant for the consistent case) for all con-
sidered cases. To compute the mixture parameters n, we used an
expectation–maximization (EM) approach based on maximizing
the log-likelihood of the hypothesized models [29]. However, EM
approach does not correctly determine the optimum number of K
components as the likelihood can always be increased by adding
more components to the mixture [28]. Standard goodness-of-fit
tests (e.g., v2 and Kolmogorov–Smirnov [30] only consider the like-
lihood without penalizing the number of parameters and therefore
they are not valid for optimum mixture modeling.

For choosing K, we modify the Akaike and Bayesian Information
criteria [28] (AIC and BIC, respectively) that penalize models with a
high number of parameters. AIC minimizes the Kullback–Leibler
distance between the true data distribution and the hypothesized
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distribution. BIC extends AIC by considering the number of data
samples. Both criteria include two terms: one depends on the
log-likelihood and the other penalizes models with more parame-
ters. However, their variation range is different. The likelihood
term depends on the number of samples1 LK ¼

Pn
i¼1gmðv i; nÞ

� 	
whereas the penalization term has none (for AIC) or low (for BIC)
dependency on the number of samples. Hence, the final decision is
completely driven by the log-likelihood as penalization costs do
not influence enough for large number of samples. Thus, selecting
the hypothesized model with highest likelihood.

In order to make equal the influence of the two terms in the
final selection, we introduce a variable penalization cost to pro-
duce the modified AIC, dAIC:

bK dAICðdÞ ¼ argmin
K

�2ln LKð Þ þ d � 2vKð Þ; ð14Þ

where d represents the weight of the penalization cost and, for each
K–Gamma mixture, vK is its number of parameters and LK is its
maximized likelihood. The modified BIC, dBIC is defined as follows:

bK dBICðdÞ ¼ argmin
K

�2ln LKð Þ þ d � vK lnðnÞð Þ; ð15Þ

where n is the sample size. We do not change the likelihood term,
�2ln LKð Þ, as it is the deviance, a measure of lack of fit for a model
[28]. Then, the optimum K is selected as the most frequent K when
scanning the results obtained for different values of d ¼ 1; . . . ;D.
Note that d ¼ 1 corresponds to the original AIC and BIC. Moreover,
at a certain d value, the variable penalization cost is higher than that
of the likelihood and the first model ðK ¼ 1Þ is always selected.
Hence, these wrong selections should not be considered for K opti-
mum selection. Fig. 5 illustrates an example of the modified criteria
showing that likelihood and penalization terms are comparable.

5.2. Accumulated filter uncertainty model p2ðvÞ

In this paper we propose the use of convolution to approximate
the upper bound of the cumulative distribution of st [31]. Applying
the proposed hypothesis test in Section 4 uses the cumulative distri-
bution of st (P2ðvÞ, see Eq. (11)), which requires to estimate the joint
1 The EM results are independent of the sample size as the maximization is
performed over the likelihood variations among the hypothesized models.

tion of Particle Filters for video tracking, Comput. Vis. Image Understand.
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Section 7.1.

Table 2
Description of the proposed modification on ARTE.

Approach # Thresholds Acquisition Signals analyzed

ARTE [13] s1; s2; s3 Manual CW1 ;̂t
t ;CW2 ;̂t

t ;CW1 ;t
t ;CW2 ;t

t

ARTE⁄ b1;b2 Automatic ct
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distribution of the accumulated and dependent RVs, p2ðvÞ. This dis-
tribution is unknown and its estimation is not straightforward to be
analytically solved. Therefore, approximations of this distribution
are needed to employ the proposed approach.

One approximation could be to empirically generate this p2ðvÞ
using real data as done for the distribution p1ðvÞ of the statistic
ct . However, this option is limited in two aspects. First, a large
number of samples is required to provide an accurate distribution
estimation, thus requiring a large training set which cannot be
always guaranteed. Second, each window length needs a different
distribution p2ðvÞ (see Eq. (8)), thus increasing the complexity of
the training process. For example, a PF tracker to be analyzed with
window lengths between 1 and 50 frames requires to get 50 differ-
ent p2ðvÞ.

On the other hand, we do not need a precise shape estimation
for the true distribution of p2ðvÞ as we are only interested in the
rightmost part of P2ðvÞ to perform the hypothesis testing. Hence,
approximations of the upper bounds for the sum of the ct statistic
are more suitable for the proposed approach. We formulate the
accumulation of L ct values as the L-sum of Qi RVs where all Q i

have the same distribution p1ðvÞ. Such upper bound can be
estimated for finite ðE½Qi� <1Þ, dependent, non-negative and
real-valued RVs [31]: these conditions satisfied by all Qi. Hence,
the distance between the sum of dependent RVs and the sum of
their independent duplicates (i.e. assuming independent Qi) is
upper-bounded by a certain factor which depends on the correla-
tion between Q i’s (their dependence) and their mean values [31].
We exploit this conclusion to use convolution as an approximation
of the upper bound of P2ðvÞ, which allows to estimate the cut value
for the hypothesis test (b parameter in Eq. (11)). The use of convo-
lution allows to quickly estimate the cut value for any desired
length of the sliding window only requiring the p1ðvÞ distribution.

After assuming independent Qi to compute such upper bound,
we use the convolution approach [32] to get the pdf of the sum
of two random variables, with pdfs m1ðvÞ and m2ðvÞ, as their
convolution m3 ¼ m1 �m2 given by:

m3ðvÞ ¼
X1

j¼�1
m1ðjÞ �m2ðv � jÞ; ð16Þ

for v ¼ . . . ;�2;�1;0;1;2; . . .. Hence, we can exploit such property
to compute p2ðvÞ as a L-fold convolution of p1ðvÞ:

p2ðvÞ ¼ pðLÞ1 ðvÞ ¼ pðL�1Þ
1 ðvÞ � p1ðvÞ; ð17Þ

where pð0Þ1 ðvÞ ¼ p1ðvÞ and p1ðvÞ � pð0Þ1 ðvÞ ¼ p1ðvÞ. Although this
recursive convolution can be analytically approached, the existing
proposals are based on combinatorial analysis [33] that heavily
Please cite this article in press as: J.C. SanMiguel, A. Cavallaro, Temporal valida
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increases the computational cost of the convolution. According to
this, we decide to obtain this convolution by empirically estimating
p1ðvÞ (i.e. generating random samples of p1ðvÞ for computing its
pdf) and then, performing the standard L-fold convolution as
described in Eq. (17).

We do not consider the Central Limit Theorem (CLT) [32] to
approximate p2ðvÞ as it depends on the number of added random
variables to estimate p2ðvÞ as NðLl;

ffiffiffi
L
p

r2Þ where l ¼ E½Q � and
r2 ¼ varðQÞ. The proposed approach may use short windows
where CLT accuracy decreases. Fig. 6 shows some examples of
the empirical cdf P2ðvÞ and their approximations assuming inde-
pendence (convolution and CLT). Although both approximations
do not reflect the empirical cdf (consequently the pdf p2ðvÞ), they
allow to establish an upper bound for P2ðvÞ. Moreover, CLT is out-
performed by convolution for short window lengths, thus decreas-
ing the accuracy of the upper bound estimation.
6. Accumulated performance evaluation of video tracking

We combine AVU into an online method performance evalua-
tion of Particle Filter-based video tracking, ARTE [13]. ARTE deter-
mines whether the Particle Filter is successfully estimating the
target state without the use of ground-truth. ARTE analyzes the
Particle Filter consistency and the time-reversibility property of
target motion.

Similarly to Eq. (6), ARTE defines four change signals (CW1 ;̂t
t ,

CW2 ;̂t
t ;CW1 ;t

t and CW2 ;t
t ) based on spatial uncertainty (i.e. only consid-

ering the center of the target location) that combines different win-
dow lengths and considerations of the change reference (first or
last sample in the window). In particular, it monitors slow ðW1Þ
or sudden ðW2Þ increases ð̂tÞ or decreases (t) of the uncertainty.
Then, change detection is applied over these four signals by empir-
ical thresholding to detect when the Particle Filter posterior is

inconsistent. First, the threshold s1 is applied to CW1 ;̂t
t and CW2 ;̂t

t ,
for positive changes (consistent–inconsistent). Negative changes
(inconsistent–consistent) are detected by using the threshold s2

on CW1 ;t
t and CW2 ;t

t . Then, a third one s3 is applied to CW2 ;t
t for nega-

tive small changes that indicate increases of the Particle Filter
consistency (i.e. its posterior is becoming more accurate). For
tion of Particle Filters for video tracking, Comput. Vis. Image Understand.
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Table 3
Summary of the evaluation sets and their tracking challenges (Key: SC, scale changes; AC, appearance changes; IC, illumination changes; O, occlusions; C, clutter).

Set Dataset Target Size Tracking challenges

D1 CAVIAR P1–P4 384 � 288 IC, C
PETS2001 P5–P10 768 � 576 SC, O, C
PETS2010 P12–P18 768 � 576 O, C
CLEMSOM F1–F4 128 � 196 SC, AC, C, O
VISOR F5, F6 352 � 288 SC, C, O

D2 AVSS2007 P1–P4 720 � 576 O, C, SC
CAVIAR P5–P6 384 � 288 SC, C
PETS2010 P7–P19 768 � 576 SC, IC, O
TRECVID P20–P24 720 � 576 IC, O, C
VISOR F1–F4 352 � 288 IC, O, C
TRECVID F5–F10 720 � 576 IC, O
MIT CAR C1–C16 720 � 480 AC, IC, O, C
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simplifying such tuning, the thresholds were originally defined
based on s1 : s2 ¼ �s1 and s3 ¼ �s1=2.

The proposed modification (hereinafter called ARTE⁄) aims to
substitute ARTE’s change detectors with our proposal. We calculate
st and detect consistency by uncertainty-based validation over
sliding windows, which defines a threshold b1 computed as in
Section 4.2. Low-to-high (positive) and high-to-low (negative)
transitions are detected as, respectively, consistent-to-inconsistent
and inconsistent-to-consistent changes of st . For small negative
changes, we include another validation for detecting inconsis-
tent-to-consistent changes of ct with a threshold b2 ¼ b1=2. Table 2
summarizes the modification showing that fewer signal detections
are required and the thresholds are automatically computed.

7. Experimental results

In this section we first compare the results of the proposed
(AVU) and related approaches for analyzing the consistency of Par-
ticle Filters and then, we evaluate the use of AVU in the context of
online performance evaluation of video tracking.2

7.1. Experimental setup

Let us consider a color-based Particle Filter for video tracking
[18] with xðnÞt being a five-component vector composed of the tar-
get position, the two main axes and the orientation of the bound-
ing ellipse approximating its area on the image plane. Color
histograms are used as target model and are generated in the
RGB space for pedestrian (P) and car (C) targets and in the HSV
one for face targets (F), using 8 � 8 � 8 bins in both cases. The filter
parameters are N ¼ 400 (particles) and the variances for target
center rx;y ¼ 5, size rHx ;Hy ¼ 0:75, orientation rh ¼ 4� and appear-
ance noise rc ¼ 0:2. For the proposed approach, we consider the
false alarm rate a ¼ 0:005 to accept the H0 hypothesis.

We use two evaluation sets (D1 and D2) with sequences
selected from the following datasets: CAVIAR,3 PETS2001,4

PETS2010,5 CLEMSON,6 VISOR,7 AVSS2007,8 TRECVID9 and MIT
TRAFFIC.10 D1 is the same set as in [13], which is composed of 18
sequences (�3400 annotated frames). D2 contains 51 sequences
(�7500 annotated frames). Both datasets include three target types,
2 Additional results, video sequences and software implementations can be found
at http://www-vpu.eps.uam.es/publications/PFConsistency.

3 http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/.
4 http://www.cvg.rdg.ac.uk/PETS2001/.
5 http://www.cvg.rdg.ac.uk/PETS2010/.
6 http://www.ces.clemson.edu/�stb/research/facetracker.
7 http://imagelab.ing.unimore.it/visor/.
8 http://www.eecs.qmul.ac.uk/�andrea/avss2007_d.html.
9 http://www.itl.nist.gov/iad/mig/tests/trecvid/2011/.

10 http://www.ee.cuhk.edu.hk/�xgwang/MITtraffic.html.
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namely cars, people and faces, and present challenging situations for
tracking such as total or partial occlusions, clutter, and illumination
or scale changes. The characteristics of the two sets are summarized
in Table 3. Sample frames (and target initialization) for D2 are shown
in Fig. 7 (for D1, we use the same initialization as shown in [13].
7.2. Evaluation measures

To analyze the accuracy for detecting uncertainty changes, we
define the ground-truth changes dt as the time instants when the
filter error, et 2 ½0;1�, changes from successful ðet < 1Þ to unsuc-
cessful ðet ¼ 1Þ or viceversa. For video tracking, we define et as
the spatial tracking error [11]:

et xE
t ; x

GT
t

� 	
¼ 1�

2 AE
t \ AGT

t

��� ���
AE

t

��� ���þ AGT
t

��� ��� ; ð18Þ

where xE
t and xGT

t are the estimated and ideal target locations at time

t; AE
t \ AGT

t

��� ��� is their spatial overlap (in pixels); and AE
t

��� ��� and AGT
t

��� ��� rep-

resent their area (in pixels). For obtaining dt , we first identify when
the filter is inconsistent by binarizing etðxE

t ; x
GT
t Þ as follows:

eb
t ¼

1 if et xE
t ; x

GT
t

� 	
¼ 1

0 if et xE
t ; x

GT
t

� 	
< 1

(
: ð19Þ

Then, we assume a consistent start of the filter ðd0 ¼ 0Þ and
obtain each dt as the initial and ending instants of the inconsis-
tency operation:

dt ¼ eb
t � eb

t�1

�� ��; 8t > 0: ð20Þ

Let TP and FP be the generated changes that match (TP) or not
(FP) with ground-truth ones dt for each time t. A match is allowed
within a tolerance window of ±5 frames. Let FN be the unmatched
dt . For evaluating detection performance, we compute Precision
(P), Recall (R) and F-score (F):

P ¼ TP=ðTP þ FPÞ; ð21Þ
R ¼ TP=ðTP þ FNÞ; ð22Þ
F ¼ 2 � P � R=ðP þ RÞ: ð23Þ

To evaluate the performance of online tracking evaluation, we
focus on the temporal segmentation task (i.e. determining whether
the tracker is successful) by means of the Receiver Operating Char-
acteristic (ROC) analysis. ROC analysis requires the definition of an
ideal (manual) segmentation to compute the similarity between
the generated and the ideal segmentation. A successful track is
determined when the error et xE

t ; x
GT
t

� 	
, defined as in Eq. (18), is

et < 1. An unsuccessful track is identified by et ¼ 1.
tion of Particle Filters for video tracking, Comput. Vis. Image Understand.
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Fig. 7. Sample target initialization for the evaluation set D2. From top-left to bottom-right: pedestrian targets: AB_Easy_man (P1), AB_Hard_man (P2), AB_Medium_woman
(P3), ThreePastShop2cor (P5), ThreePastShop2cor (P6), S2_L1_v01 (P7), S2_L2_v01 (P8), S2_L3_v01 (P11) and Trecvid (P20–P21); face targets: Trecvid (F1), Visor_occ_1 (F2); car
targets: Dtneu_redcar (C1), Mv2_020_silcar (C3), Mv2_020_whtvan (C6) and Mv2_020_blkcar (C12).
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7.3. Uncertainty modeling

We use the data of the color-based PF tracker [18] to obtain the
pdf p1ðvÞ of Q, which is then convolved to get p2ðvÞ. Different
subsets of ct values are employed to estimate the pdfs which are
extracted from:
at
is

tic
X1; . . . ;XT jet xE
t ; x

GT
t

� 	
< s


 �
; ð24Þ
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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0.15

Threshold τ

K
S

 s
t

 

Fig. 8. Similarity between the p2ðvÞ pdf estimated for D1 and D2 datasets. Data
employed considers various window lengths L and uses st values with different
filter errors ðsÞ. The Kolmogorov–Smirnov statistic ðKS 2 ½0;1�Þ is employed as
similarity measure.
where X1;...;T are T filter posteriors and s is a threshold that defines
the consistent case.

We first compare the pdfs generated by D1 and D2. Fig. 8
depicts the similarity between the pdfs p2ðvÞ obtained for D1
and D2 using the KS statistic [30]. Multiple p2ðvÞ are considered
depending on the allowed ground-truth error of ct values (via the
threshold s). For L ¼ 1; p2ðvÞ corresponds to p1ðvÞ. Low s values
have the lowest similarity (i.e. highest KS values). The tracker
rarely has low ground-truth errors and, therefore, a reduced num-
ber of samples is used to estimate p2ðvÞ, which decreases its accu-
racy. High s values slightly increase the dissimilarity as ct values of
PF inconsistency are included to model p2ðvÞ (i.e. before the tracker
loses the target). Mid-range s values get the highest similarity
which have a balance between the number of samples and incon-
sistency of ct values. Finally, the two-sample KS test [30] deter-
mined that the p2ðvÞ pdfs for D1 and D2 are different
Please cite this article in press as: J.C. SanMiguel, A. Cavallaro, Temporal valida
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distributions. This suggests that empirical thresholding may not
efficiently detect changes for both datasets simultaneously.
tion of Particle Filters for video tracking, Comput. Vis. Image Understand.
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Fig. 9. Relative difference between the cut values b estimated for D1 and D2
datasets. Data employed considers various window lengths L and uses st values
with different filter errors ðsÞ.
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Nevertheless, we are interested in the upper bound of the P2ðvÞ
cdf (see Section 4.2) instead of an accurate p2ðvÞ estimation. Fig. 9
shows the difference between the cut values b obtained for D1 and
D2 (b1 and b2, respectively). We consider the difference
D ¼ b1 � b2ð Þ=minðb1; b2Þ as a similarity measure between the
results. We observe that high (low) s values provide the highest
(lowest) similarity as more (less) samples are considered to esti-
mate P2ðvÞ. These results suggest that p1ðvÞ should be modeled
using ct values with an associated error between s 2 0:7;0:9½ �.

We compute filter uncertainty data for the consistent status,
with a window length W ¼ 25, by running the filter 100 times over
D1. Then, we extract the ct values corresponding to H0 (1,938,032
samples in total) that are represented in Fig. 4 for each s value
(computed as indicated in Eq. (18)). Fig. 10 shows the pdfs for
the extracted data with s ¼ f0:3;0:6;0:9g and the fitting results
for well-known distributions using the two-sample Kolmogorov–
Smirnov (KS) test [30] where Gamma is the best one in all
cases. After that, we use the data for s ¼ 0:9 (highest error) for
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Distribution Kolmogorov-Smirnov statistic
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Exponential .164 .188 .207

Gamma .092 .077 .075

Log-normal .234 .195 .190

Poisson .831 .807 .784

Rayleigh .556 .586 .623
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Fig. 10. Fitting of common distributions to ct values for different filter errors
ðsÞ using the Kolmogorov–Smirnov test. Bold are best results.
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uncertainty modeling. Although its KS values are the lowest ones,
the significance level of the KS test indicates that the Gamma
fitting is not perfectly accurate and therefore, motivating the
proposed modeling with a mixture of K Gamma distributions [28].

To select the optimum K for the mixture, we use dAIC and dBIC
(Eqs. (14) and (15), respectively). Fig. 11 shows the results for
weights d ranging from 1 to 600: dBIC has higher penalization costs
than dAIC when evaluating models with high K, quickly converging
to K ¼ 1. However, if we exclude K ¼ 1 as explained in Section 5.1,
both criteria agree on the optimum K ¼ 4 for modeling p1ðvÞ.

Fig. 12 compares the results of selected cut values b for the
hypothesis testing under different false alarm rates (a) and using
the approaches to compute p2ðvÞ described in Section 5.2. The
empirical results represent the optimum b values to be approxi-
mated. These values are better estimated by the convolution
approach for the various false alarms of the H0 hypothesis. The
total accumulated difference in results between empirical and con-
volution approaches is 34.75 whereas between empirical and CLT
is 86.15, thus demonstrating the preferred used of the convolution.
Moreover, the error of both approaches increases when decreasing
the false alarm rate a which shows the limitations of the upper-
bound approximation.
7.4. Change detection results

We compare AVU against representative approaches for online
change detection without thresholding: the v2 two-model sliding
window ðTwo�MChiÞ [7] that assumes Gaussian-distributed data,
the bank of Kalman filters adapted to various change hypothesis
(Mmodel) [7] and the empirical thresholding approach (EmpTh)
[13], which is tuned using D1. All approaches are applied to the
uncertainty change signal ct obtained as described in Section 4.1.
Experiments with different lengths of the sliding window (L) are
performed for testing the robustness of AVU and the results are
summarized in Fig. 13 for the D1 and D2.

Results for D1 are shown on the left column of Fig. 13. In gen-
eral, F-score results demonstrate that AVU outperforms the
selected state-of-the-art approaches for any length L showing sta-
ble F-scores around 0.40 (with a performance peak for L ¼ 5 and
L ¼ 10). M �model is able to detect several dt (high recall) as it gen-
erates many changes in the uncertainty signal (low precision).
Two�MChi get best results for L ¼ 5 and L ¼ 10 but heavily
decreases its performance for large L values because of the unsat-
isfaction of the data Gaussianity assumption. Compared to opti-
mum thresholding (EmpTh), it can be observed that for most of
the values of L ¼ f1;20;30;40;50;60g, AVU detects less dt (having
lower recall). However, AVU clearly outperforms EmpTh as its
precision is higher, resulting in a high F-score compared to EmpTh.
Moreover, AVU presents a slight decrease in F-score as L increases.
Although larger L values increases AVU precision, its recall
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Fig. 11. Selected optimum K for each weight of the penalization term (for models
with K ¼ 1; . . . ;25).
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Fig. 12. Comparison of selected cut values b for hypothesis testing using the approximations of the p2ðvÞ pdf based on the empirical, convolution and CLT approaches (all
based on the p1ðvÞ learned with D1 dataset).
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decreases as a higher amount of change is required in the sliding
window. Additionally, Particle Filter uncertainty is not usually high
for long periods of time as for video tracking, Particle Filters tend to
estimate the state of the most similar object to the target after
inconsistency (thus, becoming consistent). Hence, large L values
do not improve the overall performance.

The results for D2 (right column of Fig. 13) present similar con-
clusions to the ones for D1 where AVU also improves the selected
approaches for any window lengths. However, AVU’s results show
Please cite this article in press as: J.C. SanMiguel, A. Cavallaro, Temporal valida
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a different pattern as for D1. Unlike D1, the performance peak
(considering F-score) is not centered around L ¼ f5;10g being
shifted towards L ¼ f20;30g. This can be explained because of
two reasons. The first one is that the filter data seems to be very
stable (47 ground-truth changes in average for each run which
contains 51 targets, �0.92 errors/target) compared to D1 (�1.21
errors/target) indicating that D2 is easier to analyze than D1.
Hence, filter errors in D2 are more significant helping the change
detection task. The second reason regards the duration of the
tion of Particle Filters for video tracking, Comput. Vis. Image Understand.
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Fig. 14. Example of change detection for determining Particle Filter consistency for targets P1 (left) and P6 (right).

Table 4
ROC analysis for successful–unsuccessful segmentation of video tracking for sets D1 (left) and D2 (right). Data are presented as mean ± standard deviation. (Key: ARTE, Adaptive
Reverse Tracking Evaluation [13]; ARTE⁄, threshold-automatic ARTE; AUC, area under the curve, FPR, false positive rate, TPR, true positive rate).

Approach AUC TPR FPR Approach AUC TPR FPR

ARTE [13] .772 ± .06 .717 ± .05 .172 ± .02 ARTE [13] .747 ± .06 .732 ± .14 .237 ± .05
ARTE⁄ (L = 5) .770 ± .07 .737 ± .05 .197 ± .03 ARTE⁄ (L = 5) .770 ± .07 .800 ± .14 .261 ± .04
ARTE⁄ (L = 10) .785 ± .05 .799 ± .03 .228 ± .01 ARTE⁄ (L = 10) .806 ± .05 .900 ± .10 .289 ± .03
ARTE⁄ (L = 20) .766 ± .04 .779 ± .04 .247 ± .02 ARTE⁄ (L = 20) .763 ± .04 .926 ± .08 .401 ± .03
ARTE⁄ (L = 30) .750 ± .07 .760 ± .05 .235 ± .01 ARTE⁄ (L = 30) .735 ± .07 .868 ± .14 .398 ± .03
ARTE⁄ (L = 40) .743 ± .06 .739 ± .03 .224 ± .01 ARTE⁄ (L = 40) .717 ± .06 .796 ± .12 .361 ± .03
ARTE⁄ (L = 50) .700 ± .02 .765 ± .03 .236 ± .03 ARTE⁄ (L = 50) .722 ± .06 .767 ± .14 .279 ± .05
ARTE⁄ (L = 60) .698 ± .04 .723 ± .06 .300 ± .04 ARTE⁄ (L = 60) .710 ± .06 .776 ± .14 .276 ± .04

Table 5
Comparison of execution times for temporal segmentation with ARTE and ARTE⁄

using 10 runs for datasets D1 and D2. Data are presented as mean ± standard
deviation.

Approach Execution time per frame (ms)

Min Max Mean

ARTE [13] 2.2 ± 0.25 397.6 ± 110.04 4.58 ± 1.25
ARTE⁄ (L = 5) 2.4 ± 0.33 409.7 ± 111.32 3.9 ± 0.75
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change, D2 sequences are longer and the filter rarely finds similar
objects in the image after becoming inconsistent (thus, not chang-
ing to the consistent status). On the other hand, the filter estima-
tion changes from consistent to inconsistent (and viceversa) for
some targets of D1 (more frequently than in D2), thus making
more difficult the change detection task.

Fig. 14 shows an example of the compared approaches applied
over the uncertainty signal (black) with the objective of detecting
the ground-truth changes (cyan). On the left column, a ground-
truth change is defined ðd89 ¼ 1Þ which is correctly detected by
all the approaches. However, M-model generates additional detec-
tions for every small change in the uncertainty signal. Observe that
although EmpTh and AVU correctly detect the change, the length is
shorter for EmpTh as it does not use any sliding windows. The right
column describes a situation when the filter shows a small incon-
sistency (frames 25–40) that does not produce a ground-truth
change. EmpTh; Two-MChi and M-model wrongly detect such
change as an uncertainty variation whereas AVU does not due to
the use of sliding windows allowing to tolerate a certain amount
of change before detecting it.

7.5. Track quality estimation

The results of the method described in Section 6 for online eval-
uation are presented in Tables 4 and 5.

The left part of Table 4 shows that ARTE⁄ has similar accuracy to
ARTE for D1. A noticeable improvement in TPR is observed for
ARTE⁄ with all lengths. However, ARTE⁄ slightly increases the false
positive rate compared to ARTE because of the use of the sliding
Please cite this article in press as: J.C. SanMiguel, A. Cavallaro, Temporal valida
(2014), http://dx.doi.org/10.1016/j.cviu.2014.06.016
window, requiring a higher amount of variation to detect an uncer-
tainty change. This implies in some situations a short delay in the
detection of changes. ARTE⁄ reaches similar performance to that of
the change detector of ARTE whose threshold values were manually
tuned on the same dataset (D1). The right part of Table 4 (results on
D2) shows a situation where the thresholds of ARTE are not opti-
mal. As it can be observed, shorter windows got higher results than
that of ARTE demonstrating that the proposed approach general-
izes better than the optimal thresholding of ARTE. However, a
performance decrease is observed as the length of the window
increases due to the reduction of the number of detected changes.
The main advantage of ARTE⁄ over ARTE is that it does not require
to set any thresholds.

In Table 5, we can observe the effect of the proposed approach
in the computational cost of the track quality estimator. The most
noticeable difference is the reduction of the mean processing time
around 15%, from 4.58 ms (ARTE) to 3.9 ms (ARTE⁄). As ARTE⁄

detects a smaller number of (false) changes than ARTE, it avoids
the analysis of the stages for checking the origin of such changes,
tion of Particle Filters for video tracking, Comput. Vis. Image Understand.
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i.e. the tracker has failed, recovered after a failure or focused on a
distractor object.

Fig. 15 illustrates a comparative example for online evaluation
of video tracking. A car target is tracked throughout the sequence
and as the filter error indicates, the Particle Filter loses the target
around frame 150 due to scale changes and similar objects. At this
frame, the uncertainty signal change is not noticeable and there-
fore, no changes are detected. Then, a gradual change appears in
the uncertainty around frame 200 due to a shadow. Only ARTE⁄

is able to detect it and correctly perform a good segmentation of
filter success.

7.6. Application to other trackers

We demonstrate the generality of the proposed approach by
evaluating two state-of-the-art trackers [34,35]. The first tracker
models targets as fragments adaptively selected over time which
are embedded in the PF framework [34]. The second tracker per-
forms multi-hypothesis estimation based on sparse appearance
Please cite this article in press as: J.C. SanMiguel, A. Cavallaro, Temporal valida
(2014), http://dx.doi.org/10.1016/j.cviu.2014.06.016
models, presenting a PF-like structure [35]. We employ the code
provided by the authors with the default parameter settings. For
the proposed approach, we learn p1ðvÞ for each tracker using D1
dataset and we use L ¼ 20 as a compromise between the previ-
ously described results for D1 and D2 datasets. The EmpTh
approach is tuned to get best results for D1. The presented results
are the mean of 10 runs.

Table 6 summarizes the results of uncertainty change detection
for the selected trackers. AVU gets the highest precision and recall
scores for all trackers in most of the cases as compared to the
selected change detection approaches. The precision increase of
AVU is due to the use of the sliding window to filter noise and
the modeling of the uncertainty signal. The results also exhibit
low precision values for all trackers, indicating that the uncertainty
signal is difficult to analyze and many false positives are generated.
AVU’s recall is also improved in many sequences as slow changes
are also considered within the window. Recent trackers [34,35]
often employ mechanisms to gradually adapt the target model
over time and, therefore, the uncertainty slowly changes as
tion of Particle Filters for video tracking, Comput. Vis. Image Understand.
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Table 6
Comparison of change detection approaches for the selected PF-based trackers. Best results are indicated in bold. Data are presented as mean ± standard deviation (Key: P,
Precision; R, Recall; F, F-score).

Approach Color-tracker [18] Frag-tracker [34] Sparse-tracker [35]

P R F P R F P R F

(a) Dataset D1
Two-M Chi .133 ± .01 .220 ± .02 .166 ± .01 .186 ± .03 .251 ± .02 .214 ± .01 .080 ± .01 .788 ± .04 .145 ± .03
M-model .074 ± .03 .624 ± .01 .133 ± .02 .134 ± .02 .541 ± .01 .215 ± .01 .104 ± .02 .718 ± .03 .182 ± .02
EmpTh .233 ± .06 .539 ± .03 .326 ± .04 .142 ± .01 .530 ± .03 .224 ± .02 .102 ± .06 .410 ± .04 .163 ± .04
AVU (L = 20) .404 ± .03 .430 ± .04 .417 ± .02 .264 ± .04 .587 ± .02 .364 ± .03 .264 ± .09 .503 ± .03 .346 ± .05

(b) Dataset D2
Two-M Chi .210 ± .00 .202 ± .00 .206 ± .00 .139 ± .00 .071 ± .00 .094 ± .00 .080 ± .00 .525 ± .00 .138 ± .00
M-model .119 ± .00 .537 ± .00 .195 ± .00 .119 ± .00 .245 ± .00 .160 ± .00 .099 ± .00 .475 ± .00 .164 ± .00
EmpTh .134 ± .00 .466 ± .00 .208 ± .00 .134 ± .00 .245 ± .00 .173 ± .00 .102 ± .00 .468 ± .00 .167 ± .00
AVU (L = 20) .440 ± .00 .451 ± .00 .446 ± .00 .328 ± .00 .263 ± .00 .292 ± .00 .253 ± .00 .728 ± .00 .375 ± .00

Table 7
Comparison of video tracking performance evaluation for the selected PF-based trackers. Data are presented as mean ± standard deviation (Key: ARTE, Adaptive Reverse Tracking
Evaluation [13]; ARTE⁄, threshold-automatic ARTE; AUC, area under the curve; FPR, false positive rate; TPR, true positive rate).

Tracking
approach

Dataset D1 Dataset D2

ARTE [13] ARTE⁄ (L = 20) ARTE [13] ARTE⁄ (L = 20)

AUC TPR FPR AUC TPR FPR AUC TPR FPR AUC TPR FPR

Color-tracker
[18]

.772 ± .06 .717 ± .05 .172 ± .02 .766 ± .04 .779 ± .04 .247 ± .02 .747 ± .06 .732 ± .14 .237 ± .05 .763 ± .04 .926 ± .08 .401 ± .03

Frag-tracker [34] .727 ± .07 .748 ± .13 .294 ± .04 .746 ± .07 .738 ± .09 .246 ± .06 .715 ± .02 .822 ± .04 .390 ± .02 .788 ± .04 .718 ± .06 .143 ± .04
Sparse-tracker

[35]
.723 ± .05 .684 ± .05 .239 ± .13 .742 ± .06 .798 ± .05 .315 ± .09 .720 ± .06 .812 ± .04 .371 ± .13 .775 ± .06 .730 ± .05 .180 ± .11
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tracking failures are integrated in the target model. Analysis over
sliding windows improves performance proportionally to the
adaptation rate (high for [35] and low for [34] as observed in the
corresponding results.

Table 7 compares the results for track quality estimation. The
proposed approach has two effects for online performance evalua-
tion of tracking. First, it reduces the FPR due to the improved accu-
racy for the detected changes in filter consistency. This effect can
be observed for ST in D2 dataset and for FT in D1 and D2 datasets.
Second, it also improves TPR as less false changes are generated
and therefore the online evaluator has to analyze less (possibly)
wrong changes which may lead to evaluation errors. This effect is
observed for ST in D1 dataset and for PF in D1 and D2 datasets.

8. Conclusions

We presented an online estimation of Particle Filter consistency
that uses a sliding-window-based hypothesis testing approach and
models filter uncertainty as convolutions of mixtures of Gamma
distributions. Compared to manual thresholding, the proposed
approach increased the precision and maintained the recall values.
We applied the proposed approach to online evaluation of video
tracking, without the need of ground truth data. Experiments show
that the proposed approach generalizes better than the corre-
sponding threshold-based solution. Results also indicate that filter
inconsistency does not last long in video tracking, which requires
to use short window lengths. The high precision values of the pro-
posed approach allow us to reduce the overall computational time
as a smaller number of detections are generated. Finally, the results
over recent video trackers demonstrate the flexibility of the pro-
posed approach.

Although our approach was demonstrated on Particle Filter, it
can be applied to other multi-hypothesis filters that allow the mea-
surement of the spread of its hypotheses (i.e, representing its pos-
terior target estimation as set of samples and associated weights).
As future work, we will explore its application to deterministic
filters through appropriate adaptations [15,36], model validation
Please cite this article in press as: J.C. SanMiguel, A. Cavallaro, Temporal valida
(2014), http://dx.doi.org/10.1016/j.cviu.2014.06.016
based on multiple detectors and the selection of the optimum
window length for a particular Particle Filter setting.
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